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1. Recent Observations of M87

Relativistic Jet

In Fig. 3 the upstream end of the jet corresponding to the dashed line
in Fig. 2 is overlaid on the 43-GHz intensity image as the shaded area. By
specifying the position angle of the M87 jet, we can also evaluate the
amount of the core shift in declination. On the basis of the 43-GHz image
of M87 in previous work that discusses the large direction uncertainty of
the inner jet region3, we set the allowed range of the jet position angle
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Figure 3 | VLBA image of M87 at 43 GHz
superimposed on the measured core-shift
positions. a, Global view of the radio jet on a
subparsec scale. b, Close-up view of the region
enclosed by the rectangle in a. The synthesized beam
of the VLBA is 0.22 mas3 0.46 mas at 25u (bottom
right in the upper image). The peak brightness and
1s noise level are 724 mJy and 1.1 mJy per beam,
respectively. Contours are (21, 1, 2, 2.8 and
4)3 3.3 mJy per beam and thereafter increase by
factors of 21/2. Two broken red lines represent the
maximum possible range of the inner jet direction
centred on the 43.2-GHz core. A solid red arrow
represents the larger-scale jet direction. Red circles
indicate the core positions at 2.3, 5.0, 8.4, 15.2, 23.8
and 43.2 GHz relative to the 43.2-GHz core (the
higher the frequency of the core, the closer it
approaches the central engine). Core positions at
each frequency are averaged over two epochs. We
assume that the core shift occurs along the larger-
scale jet direction. The positional uncertainties in
declination are due to uncertainties in the direction
of the inner jet, which are shown by the vertical
broken arrows threading each core position. The
shaded area at the east of the 43.2-GHz core
represents the upstream end of the jet derived from
the core-shift measurements. This area is enclosed
by the 1s error in the core-shift value in RA, and the
direction of the inner jet defines uncertainties in
declination. A black circle (top left in b) shows the
diameter 6Rs of the innermost stable orbit around a
non-rotating black hole. Inset in a, a 15-GHz Very-
Large-Array image showing kiloparsec-scale
structure. (Copyright National Radio Astronomy
Observatory/Associated Universities, Inc./National
Science Foundation).

Figure 2 | Plot of the core-shift measurements in right ascension for M87 as
a function of observing frequency. The data sets of filled and open circles are
results for 8 and 18 April, respectively. Both observations were made at 2.3, 5.0,
8.4, 15.4, 23.8 and 43.2 GHz. The origin of the vertical axis is referenced to the
weighted-mean position of the 43.2-GHz core over the two epochs. This plot
shows that the measured core positions for the two epochs are consistent within
1s error bars, indicating that the systematic errors are effectively cancelled out
through the quasi-simultaneous multifrequency observations (see also
Supplementary Information for details of the data analysis and error
estimations). The solid curve represents the best-fit solution, with rRA(n) 5
A2a 1 B (a 5 0.94 6 0.09, A 5 1.40 6 0.16 and B 5 20.041 6 0.012), which is
derived from the weighted least-square method to the entire data set. The dashed
horizontal line represents the asymptotic line of the solid curve, which is located
at 41mas eastwards from the 43.2-GHz core in RA. At the distance of M87 of
16.7 Mpc and the mass of the black hole of 6.0 3 109 solar masses, 1 mas
corresponds to a length of 0.08 pc or 140Rs projected on the plane of the sky.
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This work: EVN at 1.6 GHz

A	Missing	Link	Has	Been	Filled

10pc 100pc

high-σ 
Kino+(2015) ApJ

ref)Hada+, (2011), Nature
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We need a very efficient 
magnetic field dissipation process

to accelerate jets!!
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2. Magnetic Reconnection

δ/L = 1/√S too thin…

Assumptions: steady flow and uniform resistivity  
         (Sweet-Parker model)

δ

L

uin

   uin

   Bin

   Bs
   us

Sweet-Parker Model

 uin ~ cA / √ S
     S = L cA / η

In many astrophysical objects, 

  uin ~ cA / √ S << cA

very slow ....

ref) Sweet, (1958)
      Parker, (1957; 1963)

     S = L cA / η ~ L/lmfp>> 1

Reconnection rate: 
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3. Turbulent Sheets

broadened by turbulent eddies
=> faster ! (vR/cA is independent of resistivity)

ref ) Lazarian & Vishniac, (1999), ApJ, 517, 700.
       Kowal et al. (2009), ApJ, 700, 63.

ρinvinL = ρoutvoutδ (1)

vin

cA
=

ρout

ρin

vout

cA

δ

L
(2)

1

δ

L



4. Theoretical Explanation
ref ) Eyink, Lazarian, Vishniac, (2011), 
        ApJ, 743, 51.

The Astrophysical Journal, 743:51 (28pp), 2011 December 10 Eyink, Lazarian, & Vishniac

Figure 3. Lagrangian trajectories that start in the ball of radius ρ around space
point x at time t move backward in time to t0, explosively separating to a field-
perpendicular distance ∆x⊥ ∼ (ε|t − t0|3)1/2 which is independent of ρ for
|t − t0| ≫ (ρ2/ε)1/3.

above Equation (48) is realistic at leading order for collisionless,
magnetized plasmas at scales larger than the ion gyroradius ρi

(Kulsrud 1983), while the smoothness scale ℓd set by field-
perpendicular viscosity and resistivity is often of the same order
or smaller than ρi . Thus, our assumptions are quite realistic.
Because of the cutoff ℓd , flux-freezing in the standard sense
must, in fact, be valid. How then can we claim that it becomes
stochastic? To see this, consider the magnetic field observed at
some finite space resolution ρ:

Bρ(x, t) =
∫

d3r Gρ(r)B(x + r, t), (49)

where we have introduced a coarse-graining kernel Gρ to
represent the smearing effect of the observation over a ball
of radius ρ around the space point x. We shall assume below
that ℓd ≪ ρ ≪ Li , the scale of the largest turbulent eddies.
Thus, ρ ! ρi satisfies these conditions. Applying the standard
Lundquist formula for the frozen-in magnetic field, one obtains

Bρ(x, t) =
∫

B(a, t0)·∇axt,t0 (a)
det(∇axt,t0 (a))

∣∣∣∣
xt,t0 (a)=x+r

Gρ(r). d3r. (50)

The Lagrangian particle trajectories that appear in this formula
start in the ball of radius ρ around x at time t and then follow
the flow velocity u backward in time to t0, as illustrated in
Figure 3. When ρ lies in a GS95 turbulent inertial range,
then the trajectories explosively separate to a perpendicular
distance ∆x⊥ ∼ (ε|t − t0|3)1/2, independent of ρ at times
|t − t0| ≫ (ρ2/ε)1/3.

The result is indistinguishable from the stochastic Lundquist
formula (35) which was derived in Section 4.1 using the
stochastic representation of Laplacian resistivity. In fact, in a
formal mathematical limit taking first ℓd → 0, then ρ → 0,
the Lagrangian trajectories in Equation (50) remain stochastic
and the two formulae coincide. This is a rigorous theorem for
the Kazantsev–Kraichnan dynamo model, where it has been
proved that the ensemble of stochastic Lagrangian trajectories
as constructed above is precisely the same as that obtained for
the λ → 0 limit (E & vanden Eijnden 2000). Stochasticity
of flux-freezing in not due intrinsically to resistivity or other
microscopic plasma mechanisms that “break” field lines but
is, instead, a fundamental consequence of turbulent Richardson
diffusion.

Higher-order terms in the generalized Ohm’s law
Equation (47) that do not appear in the ideal Equation (48) will
lead to melding and merging of field lines at scales < ρi . How-
ever, the above argument strongly suggests that these details
of the microscopic plasma processes do not affect the dynam-
ics at scales larger than ρi . In some cases this can be shown
more analytically by defining a suitable “motion” of field lines
consistent with the induction equation. For example, the formu-
lation in Section 4.1 based on addition of a Brownian motion to
the Lagrangian particle dynamics, Equation (31), can be carried
over to certain instances of the generalized Ohm’s law (see in
particular Eyink 2009 for the HMHD equations). This approach
is used in Appendix B to argue that neither the Hall effect
nor Ohmic resistivity will have any significant influence on the
inertial-range turbulence dynamics at large enough scales. The
Hall term, for example, does not affect the dynamics at scales
much greater than δi = ρi/

√
βi , the ion skin depth. Unfortu-

nately, it is difficult to extend this type of argument to all cases
of the generalized Ohm’s law because it is not known how to
define a “motion” of field lines consistent with the induction
equation for the general case.

On the other hand, there is a different argument which applies
in general and leads to the same conclusion that flux-freezing
must be intrinsically stochastic in turbulent plasmas. While the
“motion” of magnetic field lines is a conventional and somewhat
arbitrary concept, the motion of plasma is perfectly well defined
within the validity of an MHD description. Plasma fluid moves
with the bulk velocity u. Thus, field lines may be tracked
by “tagging” the lines with plasma fluid elements and then
following these as Lagrangian fluid particles (Newcomb 1958;
Axford 1984). In the case of a smooth, laminar solution of the
ideal MHD equations, this is unambiguous because of Alfvén’s
theorem: two plasma particles which start on a certain field line
must share a field line for all times. One can then, by convention,
consider this as the “same” field line as the initial one. This
approach fails for a non-ideal Ohm’s law,

E +
1
c

u×B = R, (51)

where R represents all of the terms on the RHS of Equation (47)
other than the motional term. Clearly, R is just the electric field
in the rest frame of the plasma flowing with the bulk velocity
u. EMF due to these non-ideal terms leads to time-dependent
magnetic flux in the rest frame, corresponding to a slippage of
field lines. This vitiates the usual method to assign an identity
to individual field lines over time, because plasma elements
shift their attachments to lines. Charged particles move along
magnetic field lines, but two plasma elements that start on one
field line will sit on distinct field lines at later times.

Now consider a turbulent plasma where the non-ideal term
is numerically “small” but the plasma has a turbulent inertial
range in which the velocity field u is rough, with a power-
law energy spectrum extending down to a smallest length scale
ρ0 ≈ ρi . The slight shifts in line-attachments are enormously
amplified by explosive relative advection, as illustrated in
Figure 4. Consider a single magnetic field line in this plasma
and, along it, two plasma fluid particles at initial locations
a and a′. Due to a combination of the non-ideal field R
and advection by sub-inertial-range eddies, the two plasma
particles will end up on distinct field lines displaced a distance
|x(a′, t) − x(a, t)| = ρ0 apart in a time τ0 which is generally
microscopically small compared with the eddy turnover time
tL. Because of Equation (44), the two plasma elements will
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FIG. 1.ÈGeometry of magnetic Ðeld lines in three-dimensional recon-
nection. The reconnected lines stretch and carry the conducting plasma
with them. The plasma is also redistributed along the Ðeld lines.

model oppositely directed magnetic Ðelds are brought into
contact over a region of size Magnetic Ðelds reconnectL

x
.

along a very thin Ohmic di†usion layer andL
y
B g/Vrec,Ñuid is ejected from this layer at a velocity of order in aVAdirection parallel to the local Ðeld lines. The layer in which

Ohmic di†usion takes place is usually referred to as the
current sheet. Here we will refer to the volume where the
mean magnetic Ðeld strength drops signiÐcantly as the
reconnection zone, in order to allow for the presence of
collective e†ects that may broaden the reconnection zone

FIG. 2.È(a) Structure of the reconnection region when the Ðeld is turb-
ulent. Local reconnection events happen on the small-scale rather thanj

Aand this accelerates reconnection. The plasma is redistributed along theL
xÐeld lines in a layer of thickness Sy2T1@2, which is much thicker than the

region from which the ejection of the magnetic Ðeld takes place.Dj
M(b) Local structure of magnetic Ðeld lines.

well beyond the current sheet. The reconnection velocity in
the Sweet-Parker picture is determined by the constraint
imposed by the conservation of mass condition Vrec L

x
B

Although this model is two-dimensional, it can beVA L
y
.

generalized to three dimensions by allowing the two mag-
netic Ðeld regions to share a common Ðeld component,
which has the e†ect of rotating them so that they are no
longer exactly antiparallel. This has no e†ect on the Sweet-
Parker reconnection process (see Fig. 1). However, it does
change the nature of the constraint somewhat. In addition
to ejecting matter from the reconnection zone, we must also
allow for the ejection of the magnetic Ñux due to the
common Ðeld component. This is, in e†ect, the same con-
straint in this case.

We consider the case in which there exists a large-scale,
well-ordered magnetic Ðeld of the kind that is normally
used as a starting point for discussions of reconnection. This
Ðeld may, or may not, be ordered on the largest conceivable
scales. However, we will consider scales smaller than the
typical radius of curvature of the magnetic Ðeld lines, or
alternatively, scales below the peak in the power spectrum
of the magnetic Ðeld, so that the direction of the unper-
turbed magnetic Ðeld is a reasonably well deÐned concept.
In addition, we expect that the Ðeld has some small-scale
““ wandering ÏÏ of the Ðeld lines. On any given scale the
typical angle by which Ðeld lines di†er from their neighbors
is / > 1, and this angle persists for a distance along the Ðeld
lines with a correlation distance across Ðeld lines.j

A
j
MThe modiÐcation of the mass conservation constraint in

the presence of stochastic magnetic Ðeld component is self-
evident. Instead of being squeezed from a layer whose width
is determined by Ohmic di†usion, the plasma may di†use
through a much broader layer, (see Fig. 2),L

y
D Sy2T1@2

determined by the di†usion of magnetic Ðeld lines. The
value of Sy2T1@2 can be determined once a particular model
of turbulence is adopted (see ° 3), but it is obvious from the
very beginning that this value is determined by Ðeld wan-
dering rather than Ohmic di†usion as in the Sweet-Parker
case.

In the presence of a stochastic Ðeld component, magnetic
reconnection dissipates Ðeld lines not over their entire
length but only over a scale (see Fig. 2b),DL

x
j
A

> L
xwhich is the scale over which the magnetic Ðeld line deviates

from its original direction by the thickness of the Ohmic
di†usion layer If the angle / of Ðeld devi-j

M
~1 B g/Vrec,local.ation does not depend on the scale, the local reconnection

velocity would be and would not depend on resis-DVA /
tivity. We claim in ° 3 that / does depend on scale. There-
fore, the local reconnection rate is given by theVrec,localusual Sweet-Parker formulae but with instead of i.e.,j

A
L

x
,

It is obvious from Figure 2a thatVrec,local B VA(VA j
A
/g)~1@2.

magnetic Ðeld lines will undergo reconnectionDL
x
/j

Asimultaneously (compared with a one-by-one line reconnec-
tion process for the Sweet-Parker scheme). Therefore, the
overall reconnection rate may be as large as Vrec,global Bwhich means that the reconnectionVA(L

x
/j

A
)(VA j

A
/g)~1@2,

efficiency critically depends on the value of Morej
A
.

realistically, we will Ðnd that there are other global con-
straints that end up determining the actual global reconnec-
tion speed.

The relevant values of and Sy2T1@2 depend criticallyj
Aon the magnetic Ðeld statistics. Therefore, in the next

section we will brieÑy explore the expected properties of
magnetic turbulence.

λ|| ~ L

λ⊥ ~ δ

eddy

Larger mass 
ejection

faster speed!! dissipation 
region



What happens  
in relativistic cases??
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5. Relativistic Turbulent Reconnection

Poynting Dominated(σ = 5) Matter dominated(σ =0.04)

• kB T/mc2 = 1
• driven turbulence  
     injected around central region 

B0B0

ref) Takamoto+ (2015), ApJ, 815, 16.
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6. Lundquist Number Dependence

3
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FIG. 2. Observed reconnection rate in its steady state.
Top: Reconnection rate with respect to the injected turbu-
lent velocity. Bottom: Reconnection rate with respect to the
Lundquist number: S ≡ LcA/η.

the Lundquist number, and determined by the turbulent
strength. Note that the obtained maximum reconnection
rate is very fast, vin/cA ∼ 0.05, and even comparable to
the Petschek reconnection rate [23, 24].

IV. THEORETICAL EXPLANATION

The obtained reconnection rate in Figure 2 shows an
interesting behavior owing to compressibility which can-
not be explained by incompressible theory, Equation (2).
In the following, we give an explanation for the satu-
ration and depression of the reconnection rate in high
turbulence Alfvén Mach number regime. Equation (1)
indicates the compressible effects can be divided into 2
parts: (1) the density ratio between sheet and inflow re-
gion ρs/ρin; (2) decrease of the sheet width δ/L by an
effect of the compressible MHD turbulence. Note that
δ is the actual sheet thickness determined by the turbu-
lence which is different from the initial thickness λ.

We begin with discussing the density ratio. Figures 3
are the plots of ρs/ρin with respect to the injected tur-
bulence velocity in the matter and Poynting dominated
cases σ = 0.04 and 5, respectively. They show that
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0

vinj/cA

σ=0.04

FIG. 3. The density ratio between that of inflow and sheet
region: ρs/ρin. The ratio decreases with increasing the turbu-
lent strength due to the compressible effect. Top: Poynting
dominated case: σ = 5. Bottom: Matter dominated case:
σ = 0.04.

the density ratio decreases linearly with the turbulent
strength. This can be understood from the conservation
of energy flux:

ρinc2 (1 + σ) vinL+ρin(1+2σ)ϵinjlxlz =
(

ρshsc
2γ2

s +
B2

s

4π

)
vsδ,

(4)
where we assumed a cold upstream plasma with non-
relativistic inflow, for simplisity. Note that the 2nd term
in left-hand side of the equation expresses kinetic and
electric field energy of the injected turbulence ; The
turbulent components in the sheet is assumed negligi-
ble comparing with the other terms. Using the pressure
balance: ps = B2

in/8πγ2
in, the steady state condition:

cEy = Binvin = Bsvs, and the equation of continuity,
Equation (1), this equation reduces to:

(1 + σ)ρsγsvsδ + ρin(1 + 2σ)ϵinjlxlz

=

[
2ρinσγ2

s +
B2

in

v2
s

(
δ

L

ρs

ρin
γsvs

)2
]

vsδ. (5)

Neglecting a small term proportional to (δ/L)2 ≪ 1, we

no turbulence

turbulence

idealresistive
fast & resistivity independent 

mechanism



7.  Turbulence-Strength Dependence
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8.  Necessary Turbulence Energy in Jets

vturb
cA

⌘ ↵ (1)

✏turb
✏B

⌘ ⇢0hv2turb/2

B2
0/8⇡

=
↵2

1 + �
(2)

cA ⌘ c

r
�

1 + �
, � ⌘ B2

4⇡⇢0hc2�2
=

B2
0

4⇡⇢0hc2
(3)

1

vturb
cA

⌘ ↵ (1)

✏turb
✏B

⌘ ⇢0hv2turb/2

B2
0/8⇡

=
↵2

1 + �
(2)

cA ⌘ c

r
�

1 + �
, � ⌘ B2

4⇡⇢0hc2�2
=

B2
0

4⇡⇢0hc2
(3)

1

if we set: 

vturb
cA

⌘ ↵ (1)

✏turb
✏B

⌘ ⇢0hv2turb/2

B2
0/8⇡

=
↵2

1 + �
(2)

✓
cA ⌘ c

r
�

1 + �
, � ⌘ B2

4⇡⇢0hc2�2
=

B2
0

4⇡⇢0hc2

◆
(3)

1

if we assume: α= 0.3, σ = 10, 

εturb /εB ~ 0.01

just 1% of magnetic field energy is sufficient!!

3-Mach Number



9. Application — Relativistic Jets

vin
c

& 1.9⇥ 10�3

✓
ljet

60[pc]

◆�1 ✓rMRI

3rM

◆3/2 ✓ rM
10�4[pc]

◆�1/2 ✓�jet

5

◆2

(1)

1

ref) MT+,(2015), ApJ, 812, 15
      Rieger & Aharonian, (2012), MPLA 27, 30030

rMRI vin

current sheets
(reconnection cites)

current sheets 
(reconnection sites)

44 Lazarian et al.

Fig. 21 Left panel. In the model by Lazarian and Medvedev (2015) magnetized jet with
spiral magnetic field is being ejected. The spiral undergoes kink instability which results
in turbulent reconnection. Right panel Numerical simulations of 3D relativistic jet that is
subject to the kink instability and turbulent reconnection. From Mizuno et al (2015).

More recently, Kadowaki et al (2015) revisited the aforementioned model
and extended the study to explore also the gamma-ray flare emission of these
sources. The current detectors of high energy gamma-ray emission, partic-
ularly at TeVs (e.g., the FERMI-LAT satellite and the ground observato-
ries HESS, VERITAS and MAGIC) have too poor resolution to determine
whether this emission is produced in the core or along the jets of these sources.
This study confirmed the earlier trend found in GL05 and de Gouveia Dal
Pino et al (2010b) and verified that if fast reconnection is driven by turbu-
lence, there is a correlation between the calculated fast magnetic reconnection
power and the BH mass spanning 1010 orders of magnitude. This can explain
not only the observed radio, but also the gamma-ray emission from GBHs
and low luminous AGNs (LLAGNs). This match has been found for an ex-
tensive sample of more than 230 sources which include those of the so called
fundamental plane of black hole activity (Merloni et al 2003) as shown in
Figure 23. This figure also shows that the observed emission from blazars
(i.e., high luminous AGNs whose jet points to the line of sight) and GRBs
does not follow the same trend as that of the low luminous AGNs and GBHs,
suggesting that the observed radio and gamma-ray emission in these cases is

Kink turbulence

The Astrophysical Journal, 728:90 (7pp), 2011 February 20 Mizuno et al.

(a)

Figure 1. Two-dimensional images of (Case A): the gas pressure in the xz-plane at y = 0 for (a) t = 6R/c, (c) 11R/c, the gas pressure in the yz-plane at x = 0 for
(b) t = 6R/c, (d) 11R/c, the magnetic field By in the xz-plane at y = 0 for (e) t = 3R/c, (g) 6R/c, (i) 9R/c, (k) 12R/c, and Bx in the yz-plane at x = 0 for (f)
t = 3R/c, (h) 6R/c, (j) 9R/c, and (l) 12R/c. Arrows indicate the velocity in each plane.
(A color version of this figure is available in the online journal.)

specific internal energy density, and the adiabatic index is set to
Γ = 4/3. The specific enthalpy is h ≡ 1 + e/c2 + p/ρc2.

The above configuration was shown to be neutrally stable
with respect to axisymmetric perturbations but unstable to the
helical modes (Begelman 1998). Therefore, we choose an initial

small radial velocity perturbation with the form given by

vx,y/c = δv

c
e−r

N∑

k=1

ak;x,y

N
sin

(
2πkz

Lz

+ φx

)
, (5)

3

ref) Mizuno+, (2011), ApJ



10. Particle Acceleration by Reconnection

• If Turbulent Reconnection: 

ref) Pino&Lazarian, (2005), A&A 441, 845. δ

L

uin

   uin

   Bin

   Bs
   us

shock-like acceleration

N(E) ∝ E-2.5

• X-point Acceleration:

ref) Zenitani & Hoshino (2001), ApJL, 562, 63. 
      Bessho & Bhattacharjee (2012), ApJ, 750, 129.
      Sironi & Spitkovsky, (2014), ApJL, 783, 21. 

direct acceleration  
   by electric field at X-point

N(E) ∝ E-1.4
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FIG. 2. Top: Kinetic energy spectra of Alfvén, fast, and slow mode. Bottom: Eddy-scale of Alfvén,

fast, and slow mode obtained by a 2nd-order velocity structure function. All the data are measured

at 1 eddy-turnover time.

relativistically strong [30]. Concerning the slow mode conversion, we found that slow modes

also show similar behavior to the fast mode as shown in Figure 1, but their kinetic energy is

approximately 1.5 times larger than the fast mode case. We take this to be due to the fact

that the considered turbulence is in the regime of sub-Alfvénic but super-slow turbulence.

More detailed analysis will be reported in our forthcoming papers.

Importantly, the fast to Alfvén mode power ratio depends on a 3-fast Mach number, not

the relativistic 4-fast Mach number. This means that in Poynting-dominated plasma the

compressible mode turbulence becomes important even if the kinetic energy of the turbulence

is much smaller than the background magnetic field energy, and this is very di↵erent from

the non-relativistic case whose kinetic energy of turbulence should be comparable to the

background magnetic field energy, v2
turb

⇠ B2. This will be important for the electron and

cosmic-ray acceleration by MHD turbulence [31, 32] in high-energy astrophysical phenomena,

such as GRBs and blazars (see e.g. [11]).

Alfvén Mode–The top-left panel of Figure 2 shows the kinetic energy spectrum of Alfvén
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nearly linearly with the fast Mach number as reported in the non-relativistic case [8, 9]. In
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Note that this is a relativistic extension of the Equation (6) in [8]. This indicates that
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12. Compressible Effect
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Figure 3. Lagrangian trajectories that start in the ball of radius ρ around space
point x at time t move backward in time to t0, explosively separating to a field-
perpendicular distance ∆x⊥ ∼ (ε|t − t0|3)1/2 which is independent of ρ for
|t − t0| ≫ (ρ2/ε)1/3.

above Equation (48) is realistic at leading order for collisionless,
magnetized plasmas at scales larger than the ion gyroradius ρi

(Kulsrud 1983), while the smoothness scale ℓd set by field-
perpendicular viscosity and resistivity is often of the same order
or smaller than ρi . Thus, our assumptions are quite realistic.
Because of the cutoff ℓd , flux-freezing in the standard sense
must, in fact, be valid. How then can we claim that it becomes
stochastic? To see this, consider the magnetic field observed at
some finite space resolution ρ:

Bρ(x, t) =
∫

d3r Gρ(r)B(x + r, t), (49)

where we have introduced a coarse-graining kernel Gρ to
represent the smearing effect of the observation over a ball
of radius ρ around the space point x. We shall assume below
that ℓd ≪ ρ ≪ Li , the scale of the largest turbulent eddies.
Thus, ρ ! ρi satisfies these conditions. Applying the standard
Lundquist formula for the frozen-in magnetic field, one obtains

Bρ(x, t) =
∫

B(a, t0)·∇axt,t0 (a)
det(∇axt,t0 (a))

∣∣∣∣
xt,t0 (a)=x+r

Gρ(r). d3r. (50)

The Lagrangian particle trajectories that appear in this formula
start in the ball of radius ρ around x at time t and then follow
the flow velocity u backward in time to t0, as illustrated in
Figure 3. When ρ lies in a GS95 turbulent inertial range,
then the trajectories explosively separate to a perpendicular
distance ∆x⊥ ∼ (ε|t − t0|3)1/2, independent of ρ at times
|t − t0| ≫ (ρ2/ε)1/3.

The result is indistinguishable from the stochastic Lundquist
formula (35) which was derived in Section 4.1 using the
stochastic representation of Laplacian resistivity. In fact, in a
formal mathematical limit taking first ℓd → 0, then ρ → 0,
the Lagrangian trajectories in Equation (50) remain stochastic
and the two formulae coincide. This is a rigorous theorem for
the Kazantsev–Kraichnan dynamo model, where it has been
proved that the ensemble of stochastic Lagrangian trajectories
as constructed above is precisely the same as that obtained for
the λ → 0 limit (E & vanden Eijnden 2000). Stochasticity
of flux-freezing in not due intrinsically to resistivity or other
microscopic plasma mechanisms that “break” field lines but
is, instead, a fundamental consequence of turbulent Richardson
diffusion.

Higher-order terms in the generalized Ohm’s law
Equation (47) that do not appear in the ideal Equation (48) will
lead to melding and merging of field lines at scales < ρi . How-
ever, the above argument strongly suggests that these details
of the microscopic plasma processes do not affect the dynam-
ics at scales larger than ρi . In some cases this can be shown
more analytically by defining a suitable “motion” of field lines
consistent with the induction equation. For example, the formu-
lation in Section 4.1 based on addition of a Brownian motion to
the Lagrangian particle dynamics, Equation (31), can be carried
over to certain instances of the generalized Ohm’s law (see in
particular Eyink 2009 for the HMHD equations). This approach
is used in Appendix B to argue that neither the Hall effect
nor Ohmic resistivity will have any significant influence on the
inertial-range turbulence dynamics at large enough scales. The
Hall term, for example, does not affect the dynamics at scales
much greater than δi = ρi/

√
βi , the ion skin depth. Unfortu-

nately, it is difficult to extend this type of argument to all cases
of the generalized Ohm’s law because it is not known how to
define a “motion” of field lines consistent with the induction
equation for the general case.

On the other hand, there is a different argument which applies
in general and leads to the same conclusion that flux-freezing
must be intrinsically stochastic in turbulent plasmas. While the
“motion” of magnetic field lines is a conventional and somewhat
arbitrary concept, the motion of plasma is perfectly well defined
within the validity of an MHD description. Plasma fluid moves
with the bulk velocity u. Thus, field lines may be tracked
by “tagging” the lines with plasma fluid elements and then
following these as Lagrangian fluid particles (Newcomb 1958;
Axford 1984). In the case of a smooth, laminar solution of the
ideal MHD equations, this is unambiguous because of Alfvén’s
theorem: two plasma particles which start on a certain field line
must share a field line for all times. One can then, by convention,
consider this as the “same” field line as the initial one. This
approach fails for a non-ideal Ohm’s law,

E +
1
c

u×B = R, (51)

where R represents all of the terms on the RHS of Equation (47)
other than the motional term. Clearly, R is just the electric field
in the rest frame of the plasma flowing with the bulk velocity
u. EMF due to these non-ideal terms leads to time-dependent
magnetic flux in the rest frame, corresponding to a slippage of
field lines. This vitiates the usual method to assign an identity
to individual field lines over time, because plasma elements
shift their attachments to lines. Charged particles move along
magnetic field lines, but two plasma elements that start on one
field line will sit on distinct field lines at later times.

Now consider a turbulent plasma where the non-ideal term
is numerically “small” but the plasma has a turbulent inertial
range in which the velocity field u is rough, with a power-
law energy spectrum extending down to a smallest length scale
ρ0 ≈ ρi . The slight shifts in line-attachments are enormously
amplified by explosive relative advection, as illustrated in
Figure 4. Consider a single magnetic field line in this plasma
and, along it, two plasma fluid particles at initial locations
a and a′. Due to a combination of the non-ideal field R
and advection by sub-inertial-range eddies, the two plasma
particles will end up on distinct field lines displaced a distance
|x(a′, t) − x(a, t)| = ρ0 apart in a time τ0 which is generally
microscopically small compared with the eddy turnover time
tL. Because of Equation (44), the two plasma elements will
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13. Compressible Effects

ρinvinL = ρoutvoutδ (1)

vin

cA
=

ρout

ρin

vout

cA

δ

L
(2)

1

Incompressible: 
(LV99)

δ

L
≃ min

[(
L

l

)1/2

,

(
l

L

)1/2
] (

vl

cA

)2

(1)

1

compressible: δ

L
≃ min
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L

l

)1/2

,

(
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L
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][(
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(
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]
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 Kolmogorov Turbulence
Assumptions:• Homogeneous and isotropic turbulence 

• Steady state

:eddy velocity

: Energy Spectrum

vl = vL(l/L)1/3 ∝ l1/3 (1)

E(k) ∝ k−5/3 (2)

1
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FIG. 4. Reconnection rates fitted by two functions:
f(vinj/cA) = α1(ρs/ρin)[vinj/cA − α3(vinj/cA)2], g(vinj/cA) =
α1(ρs/ρin)vinj/cA. The function f can explain the reconnec-
tion rate from the matter dominated case to the Poynting
dominated case, which indicates the compressible effects def-
initely affect the reconnection rate in turbulence.

obtain

ρs

ρin
=

1
(1 + σ)γs

[
2σγ2

s − (1 + 2σ)
ϵinj

δ

lxlz
vs

]
. (6)

Since LV99 predicts δ ∝ L(vinj/cA), the second term in
Equation (6) becomes proportional to: ϵinj/Lvinj ∝ vinj;
And we finally obtain the following form of relation:
ρs/ρin = α(1 − βvinj) which qualitatively reproduces
the linear dependence of the density ratio on the injected
turbulence strength vinj in Figure 3.

Next, LV99 obtained the following relation: δ/L ∝
(vl/cA)2 ∝ vinj/cA using an incompressible MHD turbu-
lence cascade law. In this paper, we treated compressible
MHD turbulence, so that it is expected the above relation
should be modified. More precisely, the LV99’s relation
can be rewitten as:

δ

L
∼

(
2ϵl

c3
A

)1/2

min

[(
L

l

)1/2

,

(
l

L

)1/2
]

, (7)

and substituting, ϵ ∼ v4
l /2lcA, recovers Equation (2).

Hence, if we find an expression of the energy injection
rate ϵ including compressible effects, Equation (7) may
give us a new expression of the sheet width. Re-
cently, Banerjee and Galtier [25] obtained an exact rela-
tion of energy cascade rate in the non-relativistic isother-
mal MHD turbulence. In the strong background aver-
age magnetic field limit, the relation reduces to (see also
Equations (24), (25), (26), and (27) in their paper):

−4ϵ = ∇ · F + B2
0S (8)

where r is the correlation length, playing a role of the
eddy scale length, F is the energy flux vector including
compressible effects with order of B2

0 , and S is a source or
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shows the ratio with respect to the strength of the injected
turbulence: vinj/cA with various kinds of the magnetization
parameter.

sink term due to the compressible effects. This indicates
that the compressible effects cannot be neglected in the
strong background magnetic field, and the energy cascade
rate should be redefined as an effective mean total energy
cascade rate: ϵeff ≡ ϵ + B2

0S/4, and this will give us the
necessary correction term in Equation (7). Performing
the Taylor exansion of ϵeff in vinj/cA < 1 up to 2nd-order,
the corrected sheet width can be written as:

δ

L
≃ min

[(
L

l

)1/2

,

(
l

L

)1/2
][

vinj

cA
− C3

(
vinj

cA

)2
]

,

(9)
where C3 is a coefficient resulting from the expan-
sion. Figure 4 is the reconnection rates with various
kinds of magnetization parameters: σ = 0.04, 0.5, 1, 5
which are fitted by 2 functions; one uses Equation (9)
with the density ratio, Equation (6): f(vinj/cA) =
α1(ρs/ρin)[vinj/cA − α3(vinj/cA)2], and the other only
takes into account the density ratio and uses LV99 sheet
width, Equation (9): g(vinj/cA) = α1(ρs/ρin)vinj/cA. As
can be seen, they are well-reproduced only by f whose
C3 are around unity in all the cases.

Note that the above discussion assumes that the turbu-
lence becomes compressible. To investigate the validity
of this assumption, we performed the Helmholtz decom-
position of the velocity field around the turbulent sheet.
Figure 5 are the ratio between the compressible and in-
compressible velocity components: ⟨v2

c ⟩ and ⟨v2
i ⟩, respec-

tively, in terms of the Alfvén Mach number of the in-
jected turbulence velocity dispersion, vinj/cA, using var-
ious kinds of the magnetization parameter σ. As ex-
pected, this shows that in all cases the compressible com-
ponent increases with the turbulent strength. We also
note that the maximum reconnection rate in Figure 2 is
obtained when ⟨v2

c ⟩/⟨v2
i ⟩ ∼ 0.4. In other word, this in-

dicates that the compressible effects cannot be neglected
if the compressible component becomes about half of the

compressible component becomes important!!
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Table 1
List of All Analyzed Models

Model Bext a Ms MA Resolution Maximum Time δρ δ|v|
B1P1 1.0 1.0 0.79±0.02 0.75±0.04 5123 7.0 ∼0.37 ∼0.79
B1P.1 1.0 0.3 2.52±0.05 0.62±0.03 5123 7.0 ∼1.04 ∼0.76
B1P.01 1.0 0.1 7.5 ±0.2 0.53±0.02 5123 7.0 ∼2.22 ∼0.75
B.1P1 0.1 1.0 0.74±0.02 2.1 ±0.2 5123 7.0 ∼0.26 ∼0.74
B.1P.1 0.1 0.3 2.53±0.05 2.1 ±0.2 5123 7.0 ∼0.92 ∼0.76
B.1P.01 0.1 0.1 7.52±0.09 1.9 ±0.3 5123 7.0 ∼1.85 ∼0.75

field and the initial gas pressure, respectively, and the numbers
designate the value of the corresponding quantity. For example,
a name “B.1P.01” points to an experiment with Bext = 0.1 and
P = 0.01.

We drove the turbulence at wave scale k equal to about 2.5
(2.5 times smaller than the size of the box). This scale defines
the injection scale in our models. We did not set the viscosity
and diffusion explicitly in our models. The scale at which the
dissipation starts to act is defined by the numerical diffusivity
of the scheme. The ENO-type schemes are considered to be
relatively low diffusion ones (see, e.g., Liu & Osher 1998; Levy
et al. 1999). The numerical diffusion depends not only on the
adopted numerical scheme but also on the “smoothness” of the
solution, and so it changes locally in the system. In addition, it is
a time-varying quantity. All these problems make its estimation
very difficult and incomparable among different applications.
However, the dissipation scales can be estimated approximately
from the velocity spectra. In the case of our models, we estimated
the dissipation scale kν at 22 for the resolution of 5123.

3. DECOMPOSITION OF THE VELOCITY
FIELD INTO COMPONENTS

3.1. Compressible and Incompressible Parts

Using the Hodge generalization of the Helmholtz theorem,
we can split an arbitrary vector field u into three components:

u = up + us + ul , (4)

where each component has specific properties.

1. Potential component (up). This is a curl-free component,
i.e., ∇ × up = 0, so it stems from a scalar potential φ:

up = ∇φ. (5)

The scalar potential φ is not unique. It is defined up to a
constant. This component describes the compressible part
of the velocity field.

2. Solenoidal component (us). This is a divergence-free com-
ponent, i.e., ∇ · us = 0, so it stems from a vector
potential Φ:

us = ∇ × Φ. (6)

The vector potential Φ is also not unique. It is defined only
up to a gradient field. In the case of the velocity field, this
component describes the incompressible part of the field.

3. Laplace component (ul). This is both divergence free and
curl free. The Laplace component comes from a scalar
potential that satisfies the Laplace differential equation
∆φ = 0.

Thus, the decomposition can be rewritten as

u = ∇ × Φ + ∇φ + ul . (7)

Figure 1. Graphical representation of the mode separation method. We separate
the Afvén, slow, and fast modes by the projection of the velocity Fourier
component vk on the bases ξ̂A, ξ̂s , and ξ̂f , respectively. Figure taken from
CL03.

Applying the divergence operation on both sides and using
the divergence-free property of the solenoidal and Laplace
components we obtain

∇ · u = ∇2φ = ∆φ. (8)

To find the scalar potential φ and the potential field up we
have to solve the Poisson equation with a source term ∇ · u.

To calculate the vector potential Φ we apply the curl operation
on both sides of Equation (7). Similarly, using the divergence-
free property of the potential and Laplace fields results in the
equation

∇ × u = ∇ × ∇ × Φ = ∆Φ. (9)

Here, the calculation of the vector potential Φ requires
solving a triple set of Poisson equations—one equation for each
component of Φ.

The simulations with periodic boundary conditions have the
advantage of allowing us to solve the Poisson equation using
Fourier methods. The Fourier components of the velocity field
are then transformed back into the real space, and are further
analyzed.

3.2. Separation into the Alfvén, Slow, and Fast Modes

Another very important type of decomposition is the separa-
tion of velocity into the MHD waves: Alfvén, slow, and fast. In
this paper, we use an extended mode based on a technique de-
scribed in CL03. The procedure of decomposition is performed
in Fourier space by a simple projection of the velocity’s Fourier
components û on the direction of the displacement vector for
each mode (see Figure 1). The directions of the displacement
vectors ξ̂s , ξ̂f , and ξ̂A corresponding to the slow, fast, and Alfvén
modes, respectively, are defined by their unit vectors

ξ̂s ∝ (−1 + α −
√

D)k∥k̂∥ + (1 + α −
√

D)k⊥k̂⊥ , (10)

ξ̂f ∝ (−1 + α +
√

D)k∥k̂∥ + (1 + α +
√

D)k⊥k̂⊥ , (11)

and
ξ̂A = −ϕ̂ = k̂⊥ × k̂∥ , (12)

vi vc



 MHD Turbulence (Goldreich-Sridhar model)
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eddy-motion 
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Resonanc

k∥cA ∼ k⊥vk (1)

k∥ ∝ k2/3
⊥ (2)

E(k⊥) ∝ k−5/3
⊥ (3)

1

:critical balance

    Features: •eddy is enlarged along B 

                   •Turbulent motion perpendicular  
                    to B obeys Kolmogolov law 

k∥cA ∼ k⊥vk (1)

k∥ ∝ k2/3
⊥ (2)

E(k⊥) ∝ k−5/3
⊥ (3)

1

k∥cA ∼ k⊥vk (1)

k∥ ∝ k2/3
⊥ (2)

E(k⊥) ∝ k−5/3
⊥ (3)
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3.1. Theoretical Explanation
ref ) Eyink, Lazarian, Vishniac, (2011), 
        ApJ, 743, 51.

initial 
location

The Astrophysical Journal, 743:51 (28pp), 2011 December 10 Eyink, Lazarian, & Vishniac

Figure 3. Lagrangian trajectories that start in the ball of radius ρ around space
point x at time t move backward in time to t0, explosively separating to a field-
perpendicular distance ∆x⊥ ∼ (ε|t − t0|3)1/2 which is independent of ρ for
|t − t0| ≫ (ρ2/ε)1/3.

above Equation (48) is realistic at leading order for collisionless,
magnetized plasmas at scales larger than the ion gyroradius ρi

(Kulsrud 1983), while the smoothness scale ℓd set by field-
perpendicular viscosity and resistivity is often of the same order
or smaller than ρi . Thus, our assumptions are quite realistic.
Because of the cutoff ℓd , flux-freezing in the standard sense
must, in fact, be valid. How then can we claim that it becomes
stochastic? To see this, consider the magnetic field observed at
some finite space resolution ρ:

Bρ(x, t) =
∫

d3r Gρ(r)B(x + r, t), (49)

where we have introduced a coarse-graining kernel Gρ to
represent the smearing effect of the observation over a ball
of radius ρ around the space point x. We shall assume below
that ℓd ≪ ρ ≪ Li , the scale of the largest turbulent eddies.
Thus, ρ ! ρi satisfies these conditions. Applying the standard
Lundquist formula for the frozen-in magnetic field, one obtains

Bρ(x, t) =
∫

B(a, t0)·∇axt,t0 (a)
det(∇axt,t0 (a))

∣∣∣∣
xt,t0 (a)=x+r

Gρ(r). d3r. (50)

The Lagrangian particle trajectories that appear in this formula
start in the ball of radius ρ around x at time t and then follow
the flow velocity u backward in time to t0, as illustrated in
Figure 3. When ρ lies in a GS95 turbulent inertial range,
then the trajectories explosively separate to a perpendicular
distance ∆x⊥ ∼ (ε|t − t0|3)1/2, independent of ρ at times
|t − t0| ≫ (ρ2/ε)1/3.

The result is indistinguishable from the stochastic Lundquist
formula (35) which was derived in Section 4.1 using the
stochastic representation of Laplacian resistivity. In fact, in a
formal mathematical limit taking first ℓd → 0, then ρ → 0,
the Lagrangian trajectories in Equation (50) remain stochastic
and the two formulae coincide. This is a rigorous theorem for
the Kazantsev–Kraichnan dynamo model, where it has been
proved that the ensemble of stochastic Lagrangian trajectories
as constructed above is precisely the same as that obtained for
the λ → 0 limit (E & vanden Eijnden 2000). Stochasticity
of flux-freezing in not due intrinsically to resistivity or other
microscopic plasma mechanisms that “break” field lines but
is, instead, a fundamental consequence of turbulent Richardson
diffusion.

Higher-order terms in the generalized Ohm’s law
Equation (47) that do not appear in the ideal Equation (48) will
lead to melding and merging of field lines at scales < ρi . How-
ever, the above argument strongly suggests that these details
of the microscopic plasma processes do not affect the dynam-
ics at scales larger than ρi . In some cases this can be shown
more analytically by defining a suitable “motion” of field lines
consistent with the induction equation. For example, the formu-
lation in Section 4.1 based on addition of a Brownian motion to
the Lagrangian particle dynamics, Equation (31), can be carried
over to certain instances of the generalized Ohm’s law (see in
particular Eyink 2009 for the HMHD equations). This approach
is used in Appendix B to argue that neither the Hall effect
nor Ohmic resistivity will have any significant influence on the
inertial-range turbulence dynamics at large enough scales. The
Hall term, for example, does not affect the dynamics at scales
much greater than δi = ρi/

√
βi , the ion skin depth. Unfortu-

nately, it is difficult to extend this type of argument to all cases
of the generalized Ohm’s law because it is not known how to
define a “motion” of field lines consistent with the induction
equation for the general case.

On the other hand, there is a different argument which applies
in general and leads to the same conclusion that flux-freezing
must be intrinsically stochastic in turbulent plasmas. While the
“motion” of magnetic field lines is a conventional and somewhat
arbitrary concept, the motion of plasma is perfectly well defined
within the validity of an MHD description. Plasma fluid moves
with the bulk velocity u. Thus, field lines may be tracked
by “tagging” the lines with plasma fluid elements and then
following these as Lagrangian fluid particles (Newcomb 1958;
Axford 1984). In the case of a smooth, laminar solution of the
ideal MHD equations, this is unambiguous because of Alfvén’s
theorem: two plasma particles which start on a certain field line
must share a field line for all times. One can then, by convention,
consider this as the “same” field line as the initial one. This
approach fails for a non-ideal Ohm’s law,

E +
1
c

u×B = R, (51)

where R represents all of the terms on the RHS of Equation (47)
other than the motional term. Clearly, R is just the electric field
in the rest frame of the plasma flowing with the bulk velocity
u. EMF due to these non-ideal terms leads to time-dependent
magnetic flux in the rest frame, corresponding to a slippage of
field lines. This vitiates the usual method to assign an identity
to individual field lines over time, because plasma elements
shift their attachments to lines. Charged particles move along
magnetic field lines, but two plasma elements that start on one
field line will sit on distinct field lines at later times.

Now consider a turbulent plasma where the non-ideal term
is numerically “small” but the plasma has a turbulent inertial
range in which the velocity field u is rough, with a power-
law energy spectrum extending down to a smallest length scale
ρ0 ≈ ρi . The slight shifts in line-attachments are enormously
amplified by explosive relative advection, as illustrated in
Figure 4. Consider a single magnetic field line in this plasma
and, along it, two plasma fluid particles at initial locations
a and a′. Due to a combination of the non-ideal field R
and advection by sub-inertial-range eddies, the two plasma
particles will end up on distinct field lines displaced a distance
|x(a′, t) − x(a, t)| = ρ0 apart in a time τ0 which is generally
microscopically small compared with the eddy turnover time
tL. Because of Equation (44), the two plasma elements will

12

Richardson Two 
Particle Diffusion:D⊥

δ

Lx
= M2

Amin

{(
Lx

Li

)1/2

,

(
Li

Lx

)1/2
}

(1)

1

⟨y2(t)⟩ ∼ (1)

(L3
x/Li)M4

A(t/tA)3 (2)

1

Diffusion= 
independent of 

initial width 
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3.1. Theoretical Explanation

λ||

L
∼

(
λ⊥
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)−4/3

(1)

1
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∼
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vl
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)−4/3

(1)

1

B
eddy

: MHD turbulence
λ||

l
∼

(
λ⊥
l

)2/3 (
vl

cA

)−4/3

(1)

vin

cA
=

δ

L
∼ λ⊥

λ||
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∼
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cA

)2 (
l
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)
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1
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FIG. 1.ÈGeometry of magnetic Ðeld lines in three-dimensional recon-
nection. The reconnected lines stretch and carry the conducting plasma
with them. The plasma is also redistributed along the Ðeld lines.

model oppositely directed magnetic Ðelds are brought into
contact over a region of size Magnetic Ðelds reconnectL

x
.

along a very thin Ohmic di†usion layer andL
y
B g/Vrec,Ñuid is ejected from this layer at a velocity of order in aVAdirection parallel to the local Ðeld lines. The layer in which

Ohmic di†usion takes place is usually referred to as the
current sheet. Here we will refer to the volume where the
mean magnetic Ðeld strength drops signiÐcantly as the
reconnection zone, in order to allow for the presence of
collective e†ects that may broaden the reconnection zone

FIG. 2.È(a) Structure of the reconnection region when the Ðeld is turb-
ulent. Local reconnection events happen on the small-scale rather thanj

Aand this accelerates reconnection. The plasma is redistributed along theL
xÐeld lines in a layer of thickness Sy2T1@2, which is much thicker than the

region from which the ejection of the magnetic Ðeld takes place.Dj
M(b) Local structure of magnetic Ðeld lines.

well beyond the current sheet. The reconnection velocity in
the Sweet-Parker picture is determined by the constraint
imposed by the conservation of mass condition Vrec L

x
B

Although this model is two-dimensional, it can beVA L
y
.

generalized to three dimensions by allowing the two mag-
netic Ðeld regions to share a common Ðeld component,
which has the e†ect of rotating them so that they are no
longer exactly antiparallel. This has no e†ect on the Sweet-
Parker reconnection process (see Fig. 1). However, it does
change the nature of the constraint somewhat. In addition
to ejecting matter from the reconnection zone, we must also
allow for the ejection of the magnetic Ñux due to the
common Ðeld component. This is, in e†ect, the same con-
straint in this case.

We consider the case in which there exists a large-scale,
well-ordered magnetic Ðeld of the kind that is normally
used as a starting point for discussions of reconnection. This
Ðeld may, or may not, be ordered on the largest conceivable
scales. However, we will consider scales smaller than the
typical radius of curvature of the magnetic Ðeld lines, or
alternatively, scales below the peak in the power spectrum
of the magnetic Ðeld, so that the direction of the unper-
turbed magnetic Ðeld is a reasonably well deÐned concept.
In addition, we expect that the Ðeld has some small-scale
““ wandering ÏÏ of the Ðeld lines. On any given scale the
typical angle by which Ðeld lines di†er from their neighbors
is / > 1, and this angle persists for a distance along the Ðeld
lines with a correlation distance across Ðeld lines.j

A
j
MThe modiÐcation of the mass conservation constraint in

the presence of stochastic magnetic Ðeld component is self-
evident. Instead of being squeezed from a layer whose width
is determined by Ohmic di†usion, the plasma may di†use
through a much broader layer, (see Fig. 2),L

y
D Sy2T1@2

determined by the di†usion of magnetic Ðeld lines. The
value of Sy2T1@2 can be determined once a particular model
of turbulence is adopted (see ° 3), but it is obvious from the
very beginning that this value is determined by Ðeld wan-
dering rather than Ohmic di†usion as in the Sweet-Parker
case.

In the presence of a stochastic Ðeld component, magnetic
reconnection dissipates Ðeld lines not over their entire
length but only over a scale (see Fig. 2b),DL

x
j
A

> L
xwhich is the scale over which the magnetic Ðeld line deviates

from its original direction by the thickness of the Ohmic
di†usion layer If the angle / of Ðeld devi-j

M
~1 B g/Vrec,local.ation does not depend on the scale, the local reconnection

velocity would be and would not depend on resis-DVA /
tivity. We claim in ° 3 that / does depend on scale. There-
fore, the local reconnection rate is given by theVrec,localusual Sweet-Parker formulae but with instead of i.e.,j

A
L

x
,

It is obvious from Figure 2a thatVrec,local B VA(VA j
A
/g)~1@2.

magnetic Ðeld lines will undergo reconnectionDL
x
/j

Asimultaneously (compared with a one-by-one line reconnec-
tion process for the Sweet-Parker scheme). Therefore, the
overall reconnection rate may be as large as Vrec,global Bwhich means that the reconnectionVA(L

x
/j

A
)(VA j

A
/g)~1@2,

efficiency critically depends on the value of Morej
A
.

realistically, we will Ðnd that there are other global con-
straints that end up determining the actual global reconnec-
tion speed.

The relevant values of and Sy2T1@2 depend criticallyj
Aon the magnetic Ðeld statistics. Therefore, in the next

section we will brieÑy explore the expected properties of
magnetic turbulence.

λ|| ~ L

λ⊥ ~ δ
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Relativistic Ideal Fluid

Basic equations of relativistic hydrodynamics (RHD):

:Mass Conservation

: Equation of Motion

: Equation of Energy

: spatial projection tensor

:3+1 decomposition
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2.5. Relativistic Magnetohydrodynamics

Basic equations of RMHD: 

∂t(ργ) + ∂i(ργvi) = 0, (1)

∂t(ρhtotγ
2vj − b0bj) + ∂i(ρhtotγ

2vivj + ptotδ
ij − bibj) = 0, (2)

∂t(ρhtotγ
2 − ptot − (b0)2) + ∂i(ρhtotγ

2vi − b0bi) = 0, (3)

∂tB
j + ∂i(viBj − Bivj) = 0, ∂iB

i = 0. (4)

1

∂t(ργ) + ∂i(ργvi) = 0, (1)

∂t(ρhtotγ
2vj − b0bj) + ∂i(ρhtotγ

2vivj + ptotδ
ij − bibj) = 0, (2)

∂t(ρhtotγ
2 − ptot − (b0)2) + ∂i(ρhtotγ

2vi − b0bi) = 0, (3)

∂tB
j + ∂i(viBj − Bivj) = 0, ∂iB

i = 0. (4)

htot = 1 + ϵ +
b2

ρ
, ptot = pgas +

b2

2
(5)

1

features: • correction from Lorentz factor and inertia of energy
• tension and pressure from magnetic field
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2.3. Relativistic Effects:

Alfven velocity:

Electric Field:

qE ∼ (∇E)E ∼ v2B2/R ∼ pBv ·∇v (1)
j × B ∼ (∇× B − ∂tE) × B ∼ (∇× B − ∂tvB) × B (2)

∼ (∇× B) × B − pB∂tv (3)

1

  

  

  
  

cA/c =
B√

4πρh + B2
< 1 (1)

1

Lorentz contraction:

lab frame density: ρ ⇒ ρ γ 

  

  larger density

sub-luminal

 inertia from 
magnetic field
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2.4. Relativistic Effects on Reconnection

density=ρ0 γ
transfer more matter

with relativistic velocity

kB T/mc2 > 1, γ > 1
= large inertia

        strong beaming
=>decelerate…
    thin sheet…

ref) Lyutikov&Uzdensky 2003, ApJ 589, 893  
      Lyubarsky, (2005), ApJ, 358, 113.
      Zenitani etal, (2009), ApJ 696, 1385.

vin/cA ≤
√

σ√
S

(1)

1

σ =
B2

4πρhc2γ2
(1)

1

Maximum SP Rate
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3.6. Compressible Effect: 2
ref ) Banerjee & Galtier, PRE 87, 013019, (2013). 

δ

L
∼

(
2ϵl

c3
A

)1/2

min

[(
L

l

)1/2

,

(
l

L

)1/2
]

, (1)

−4ϵ = ∇ · F + B2
0S (2)

1

δ

L
∼

(
2ϵl

c3
A

)1/2

min

[(
L

l

)1/2

,

(
l

L

)1/2
]

, (1)

−4ϵ = ∇ · F + B2
0S (2)

1

δ

L
∼

(
2ϵl

c3
A

)1/2

min

[(
L

l

)1/2

,

(
l

L

)1/2
]

, (1)

−4ϵ = ∇ · F + B2
0S (2)

ϵeff = ϵ + B2
0S/4 (3)

1

Energy cascade law in MHD turbulence: 

This can be larger than LV99
if S>0

Turbulent Sheet width:

EXACT RELATION WITH TWO-POINT CORRELATION . . . PHYSICAL REVIEW E 87, 013019 (2013)

It is nothing but the exact relation which was derived in [9].
The only difference between the relation obtained above and
that in the published paper is that here the pressure terms are
written as the source terms whereas previously those were
considered to contribute in flux terms.

3. High and low β plasmas

Without a problem we admit that in the limit where the β
parameter of the plasma tends to infinity (very large value),
i.e., the plasma becomes almost incompressible (although
not entirely), the flux term "2/β becomes negligible with
respect to "1 of Eq. (20). On the contrary for a very small
β value, where the plasma can be assumed to be cold
and magnetized (kinetic pressure negligible with respect to
magnetic pressure), the term "2/β dominates over "1 term
and at that situation the effective flux term becomes (after

rearrangement)

−1
4

〈
1
β ′ ∇

′ · (ρve′) + 1
β

∇ · (ρ ′v′e)
〉
. (23)

B. Presence of an external magnetic field

Relation (19) comprises the total magnetic field at each
point of the flow field. This total field b at each point can
be supposed (a realistic case) to have a fluctuating part (vary
in space and time) b̃ superimposed on a constant external
magnetic field B0. In the following, we shall investigate the
flux and the source terms under the said situation.

1. Flux contribution

The part of the total flux term which contains B0 can be
expressed as (with µ0 = 1)

〈
"B0

〉
= ∇r

2
·
〈
δ

(
1

√
ρ

)
δ(

√
ρ)[B0 × (δv × B0)] + δ(

√
ρ)[B0 × (δv × δṽA)] − δ2

(
1

√
ρ

)
[δ(ρv) · B0]B0

+ δ

(
1

√
ρ

)
[δ(ρṽA) × (δv × B0) + δ(ρv) × (δṽA × B0)] + B2

0δ

(
1
ρ

)
δ(ρv) + 2

[
B0 · δ

(
ṽA√
ρ

)]
δ(ρv)

〉

− 1
2

〈
B2

0

2ρ ′2 ρv · ∇′ρ ′ + B0 · b̃
ρ ′2 ρv · ∇′ρ ′ + B2

0

2ρ2
ρ ′v′ · ∇ρ + B0 · b̃′

ρ2
ρ ′v′ · ∇ρ

〉
, (24)

where ṽA = b̃/
√

ρ. Now we assume the external field B0 to
be very strong so that B0 ≫ |b̃| (and also B0 ≫ |δv|). This
situation is classical in astrophysics: for example, there are
many evidences of magnetic loops in the turbulent solar corona
which are interpreted as strong uniform magnetic fields on
which small magnetic and velocity fluctuations are present
[29,30]. We shall just consider the terms weighted by B2

0 . After
some straightforward calculations, we obtain the resultant flux
term (the magnetic terms without B0 and with single power of
B0 are neglected) which writes at main order

〈
"B0

〉
= ∇r

2
·
〈
δ

(
1

√
ρ

)
δ(

√
ρ)[B0 × (δv × B0)]

−
[
δ

(
1

√
ρ

)]2

[δ(ρv) · B0]B0

〉
. (25)

The above expression gives the modifying part of the flux
in the presence of a strong constant magnetic field applied
externally. One can easily understand that the modification
is purely due to compressibility. [Note that the pure kinetic
terms, not shown in Eq. (25), give also a contribution to the
total flux.] It is also interesting to notice that in expression (25)
the fluctuations are exclusively kinetic in nature (because of
the absence of, e.g., a Hall-type term in the basic equations).
One can easily verify that the δv of the first term and the δ(ρv)
of the second term of the above expression can be replaced by
δv⊥ and δ(ρv∥), respectively, where δv⊥⊥B0 and δv∥∥B0. The
pure kinetic terms can, however, be omitted by assuming the
external magnetic contribution to be dominant with respect to

the velocity and the density fluctuations and then expression
(25) will represent the total flux contribution.

2. Source contribution

The source terms are also modified due to the effect of a
strong external magnetic field. At main order (keeping only
the terms in B2

0 ), the terms of type ⟨(∇ · v)S1⟩ get reduced to

⟨%v⟩ = B2
0

2

〈
δ(∇ · v)δ

(
1

√
ρ

)
δ(

√
ρ) − δ(∇ · v)

〉
, (26)

and the source terms like ⟨(∇ · vA)S2⟩ write

⟨%vA⟩

= B0 ·
〈
∇

(
1

√
ρ

)[
(B0 · v′)

{
ρ ′δ

(
1

√
ρ

)}
− (B0 · v)

δρ

2
√

ρ ′

]

−∇′
(

1√
ρ ′

)[
(B0 · v)

{
ρδ

(
1

√
ρ

)}
− (B0 · v′)

δρ

2
√

ρ

]〉
.

(27)

We note that the latter expression implies only parallel
components of the velocity.

3. Reduced anisotropic law

Further simplifications are possible if we assume that the
velocity field vector at each point of the flow field is (at the main
order) perpendicular to the external magnetic field, i.e., if v∥ =
v′

∥ = 0, and therefore v ≡ v⊥. In that case, ⟨%vA⟩ vanishes and
so does the second term of ⟨"Bz⟩; then the corresponding

013019-5
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It is nothing but the exact relation which was derived in [9].
The only difference between the relation obtained above and
that in the published paper is that here the pressure terms are
written as the source terms whereas previously those were
considered to contribute in flux terms.

3. High and low β plasmas

Without a problem we admit that in the limit where the β
parameter of the plasma tends to infinity (very large value),
i.e., the plasma becomes almost incompressible (although
not entirely), the flux term "2/β becomes negligible with
respect to "1 of Eq. (20). On the contrary for a very small
β value, where the plasma can be assumed to be cold
and magnetized (kinetic pressure negligible with respect to
magnetic pressure), the term "2/β dominates over "1 term
and at that situation the effective flux term becomes (after

rearrangement)

−1
4

〈
1
β ′ ∇

′ · (ρve′) + 1
β

∇ · (ρ ′v′e)
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B. Presence of an external magnetic field

Relation (19) comprises the total magnetic field at each
point of the flow field. This total field b at each point can
be supposed (a realistic case) to have a fluctuating part (vary
in space and time) b̃ superimposed on a constant external
magnetic field B0. In the following, we shall investigate the
flux and the source terms under the said situation.

1. Flux contribution

The part of the total flux term which contains B0 can be
expressed as (with µ0 = 1)
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[δ(ρṽA) × (δv × B0) + δ(ρv) × (δṽA × B0)] + B2

0δ

(
1
ρ

)
δ(ρv) + 2

[
B0 · δ

(
ṽA√
ρ

)]
δ(ρv)

〉

− 1
2

〈
B2

0

2ρ ′2 ρv · ∇′ρ ′ + B0 · b̃
ρ ′2 ρv · ∇′ρ ′ + B2

0

2ρ2
ρ ′v′ · ∇ρ + B0 · b̃′

ρ2
ρ ′v′ · ∇ρ

〉
, (24)

where ṽA = b̃/
√

ρ. Now we assume the external field B0 to
be very strong so that B0 ≫ |b̃| (and also B0 ≫ |δv|). This
situation is classical in astrophysics: for example, there are
many evidences of magnetic loops in the turbulent solar corona
which are interpreted as strong uniform magnetic fields on
which small magnetic and velocity fluctuations are present
[29,30]. We shall just consider the terms weighted by B2

0 . After
some straightforward calculations, we obtain the resultant flux
term (the magnetic terms without B0 and with single power of
B0 are neglected) which writes at main order

〈
"B0

〉
= ∇r

2
·
〈
δ

(
1

√
ρ

)
δ(

√
ρ)[B0 × (δv × B0)]

−
[
δ

(
1

√
ρ

)]2

[δ(ρv) · B0]B0

〉
. (25)

The above expression gives the modifying part of the flux
in the presence of a strong constant magnetic field applied
externally. One can easily understand that the modification
is purely due to compressibility. [Note that the pure kinetic
terms, not shown in Eq. (25), give also a contribution to the
total flux.] It is also interesting to notice that in expression (25)
the fluctuations are exclusively kinetic in nature (because of
the absence of, e.g., a Hall-type term in the basic equations).
One can easily verify that the δv of the first term and the δ(ρv)
of the second term of the above expression can be replaced by
δv⊥ and δ(ρv∥), respectively, where δv⊥⊥B0 and δv∥∥B0. The
pure kinetic terms can, however, be omitted by assuming the
external magnetic contribution to be dominant with respect to

the velocity and the density fluctuations and then expression
(25) will represent the total flux contribution.

2. Source contribution

The source terms are also modified due to the effect of a
strong external magnetic field. At main order (keeping only
the terms in B2

0 ), the terms of type ⟨(∇ · v)S1⟩ get reduced to

⟨%v⟩ = B2
0

2

〈
δ(∇ · v)δ

(
1

√
ρ

)
δ(

√
ρ) − δ(∇ · v)

〉
, (26)

and the source terms like ⟨(∇ · vA)S2⟩ write

⟨%vA⟩

= B0 ·
〈
∇

(
1

√
ρ

)[
(B0 · v′)

{
ρ ′δ

(
1

√
ρ

)}
− (B0 · v)

δρ

2
√

ρ ′

]

−∇′
(

1√
ρ ′

)[
(B0 · v)

{
ρδ

(
1

√
ρ

)}
− (B0 · v′)

δρ

2
√

ρ

]〉
.

(27)

We note that the latter expression implies only parallel
components of the velocity.

3. Reduced anisotropic law

Further simplifications are possible if we assume that the
velocity field vector at each point of the flow field is (at the main
order) perpendicular to the external magnetic field, i.e., if v∥ =
v′

∥ = 0, and therefore v ≡ v⊥. In that case, ⟨%vA⟩ vanishes and
so does the second term of ⟨"Bz⟩; then the corresponding
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11. Application — Relativistic Jets

high σ flowhigh σ flow

Ldissip << 1pc

Introduction–Magnetic reconnection is known as a process responsible for a very efficient

magnetic field dissipation in many plasma phenomena. However, the classical theory of

magnetic reconnection [1, 2] predicts that magnetic reconnection becomes very slow in high

magnetic Reynolds number plasma (Rm ∼ 1010), and fails to explain observed dissipation

timescale in space and astrophysical phenomena. To solve this problem, a lot of efforts have

gone into finding a fast-reconnection process that does not depend on the value of resistivity.

Using the equation of continuity, the reconnection rate can be expressed as

vin

cA
=

ρs

ρin

vs

cA

δ

L
, (1)

where the subscript “in” and “s” indicate the inflow and outflow region, respectively, vin, vs

are the inflow and outflow velocity, respectively, cA is the Alfvén velocity, ρ is the mass

density, and δ is the sheet thickness, and L is the sheet length. This equation shows that

fast reconnection processes can be obtained by increasing the density ratio: ρs/ρin, the

outflow velocity: vs/cA, and the aspect ratio of sheets: δ/L [3–5].

Turbulence has been considered as a key process that can accelerate magnetic field an-

nihilation. In Poynting dominated plasmas, relatively strong turbulence can be induced

by various ways, e.g., the Richtmyer-Meshkov type instability at shock fronts [6, 7], which

induces turbulence with velocity dispersion up to ∆vturb/a ! 1.5/
√

σ [8]; the tearing insta-

bility with turbulent velocity Lorentz factor, γturb ≃
√

ασ/2, where σ is the magnetization

parameter defined later, a is the sound velocity, and α is energy conversion factor from

magnetic field into kinetic energy. It was theoretically suggested that strong Alfvénic turbu-

lence also increases the sheet aspect ratio, and the reconnection rate becomes independent

of the resistivity (Lazarian and Vishniac [9], henceforth LV99). LV99 predicts the following

expression of reconnection rate:

vin

cA
≃ min

[(
L

l

)1/2

,

(
l

L

)1/2
](

vl

cA

)2

(2)

where l and vl are the energy injection scale and velocity dispersion of turbulence at the

injection scale, respectively. This was examined using magnetohydrodynamics (MHD) sim-

ulation [10]. However, it was limited only in the non-relativistic incompressible plasma with

plasma β larger than unity, and its applicability to relativistic Poynting dominated plasma

with relativistic turbulence was unclear, which is very important in the context of high

energy astrophysical phenomena [11, 12].
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:sheet driven

:shock driven

ldissip,obs

rTS
∼ 10−4

( σ

104

) (
2πrLC

109[cm]

)(
MR

0.1

)−1

(1)

1

It doesn’t contradict to 
the Crab observations!!



2. Poynting Dominated Plasma of Astrophysical Phenomena

29

Central 
Engine

Outflow from 
highly magnetized central engine 

or magnetic field driven one

Some efficient energy 
conversion

?
Matter Energy 
Dominated Plasma

radiation

Poynting Energy 
Dominated Plasma


