Relativistic Jets in AGN: Magnetic Field Structure and Particle Acceleration

Łukasz Stawarz Jagiellonian University, Kraków, Poland

In a collaboration with many colleagues, including M.C. Begelman, **G. Bhatta**, C.C. Cheung, **A. Goyal**, **V. Marchenko**, M. Ostrowski, **S. Saito**, M. Sikora

Internal shock model

Matter-dominated outflows?

	55	Model parameter	Flare 1	Flare 2
$\log \gamma^2 N_{\gamma}$	$R = R_{stop}$	Minimum electron Lorentz factor, γ_{\min}	1	
	$B = B_{end}$	Break electron Lorentz factor, $\gamma_{\rm br}$	900	
	51 Sales and Sa	Maximum electron Lorentz factor, γ_{max}	1×10^5	
		Low-energy electron injection index, p	1.2	
	53	High-energy electron injection index, q	3.4	
		Bulk Lorentz factor of the emitting shell, Γ	22	
		Jet opening angle, θ_{jet}	$2.6\deg$	
		Jet viewing angle, $\theta_{\rm obs}$	$2.6\deg$	
		Jet magnetic field intensity at 10^{18} cm, B_0	$0.75\mathrm{G}$	
	52	Characteristic scale of the BLR, $R_{\rm BLR}$	$0.12 imes 10^{18} \mathrm{cm}$	
		Central energy density of the BLR photon field, $u_{\rm BLR}$	$0.06\mathrm{ergcm^{-3}}$	
	$ \Pi = \Pi$ start	Characteristic energy of the BLR photons, $h\nu_{\rm BLR}$	10 0	eV
	51	Characteristic scale of the HDT, $R_{\rm HDT}$	$1.94 \times 10^{18} \mathrm{cm}$	
		Central energy density of the HDT photon field, $u_{\rm HDT}$	$5 imes 10^{-4}\mathrm{erg}\mathrm{cm}^{-3}$	
		Characteristic energy of the HDT photons, $h\nu_{\rm HDT}$	0.15	eV
		Normalization of the electron injection function, K_e	$1.6 \times 10^{47} \mathrm{s}^{-1}$	$0.6 imes 10^{47} { m s}^{-1}$
	50 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5	Distance where the injection starts, R_{start}	$0.7 \times 10^{18} {\rm cm}$	$2.3 imes 10^{18} \mathrm{cm}$
	log v	Distance where the injection terminates, $R_{\rm stop}$	$0.9 \times 10^{18} \mathrm{cm}$	$3.4 imes 10^{18} \mathrm{cm}$
		Distance where the simulation stops, R_{end}	$2.3 \times 10^{18} \mathrm{ cm}$	$6.9 imes10^{18}\mathrm{cm}$

Saito et al. 2015:

- 1) thin emitting shells propagating relatively far from the core (modeling results imply $l_{sh}^{'}$ 1.5e15 cm and r'~4e16cm, meaning $l_{sh}^{'}/r'$ ~0.035 and $l_{sh}/r \sim \delta l_{sh}^{'}/r' \sim 0.8$)
- 2) jets dominated by cold protons, at least during the flares (in the case of a pure pair plasma, the energy conservation would then imply unrealistically high bulk Lorentz factor of the faster shell, namely $\Gamma_2 \sim 5000$ for the the downstream bulk Lorentz factor $\Gamma_{sh} = 22$)
- "peculiar" broken power-law electron spectra (the low-energy injection index p<<2 and the high-energy injection index q>>2)

Similar results obtained when modelling other blazar flares in the framework of the internal shock model!

Relativistic e±p+ shocks?

Reconfinement Nozzle

Stawarz et al. 2006, Cheung et al. 2007, Harris 2009: HST-1 knot as a reconfinement shock, and a plausible γ -ray emission site

Standing shock?

However...

Bhatta et al. 2015: optical microflare in blazar S5 0716+714 looks quite similar, although here we are dealing with the timescales of HOURS, not years...

How fast/common/strong?

- Can we pinpoint the high-energy emission site from flux doubling timescales and MWL correlations?
- Can we infer robustly the jet parameters from modelling single isolated flaring events?
- inconclusive results, contradicting statements; various models applied;
- events claimed to be correlated, are often on different timescales, and have different variability amplitudes;
- is there any meaning behind "minimum variability timescales" inferred from single isolated flaring events as "flux doubling timescales"?
- can we say anything robust without continuous, long, and densely sampled MWL monitoring?

Red/pink Noise!

<u>Goyal et al. 2016</u>: variability analysis for the blazar PKS 0735+178 reveals a pure red noise ("random walk") type variability from hours to decades at radio and optical frequencies, with no "characteristic" timescales... interestingly, the PSD in gamma-rays seems more consistent with the pink noise ("long-memory") type variability!

All the blazars are red/pink!

see also Chatterjee et al. 2013/15, Isobe et al. 2015, Sobolewska et al. 2014

Synchrotron vs. Inverse-Compton

Isobe et al. 2015: Mrk 421 in X-rays (synchrotron!)

Goyal et al. 2016, in prep: PKS1510 in X-rays (IC!)

Stochastic process(es)

Short variability: Fermi-LAT

Number of days

No significant variability!

Large-scale quasar jets

Marshall et al. 2010, Hardcastle et al. 2016:

~1000yr variability expected, ~1yr variability observed!

Small-scale substructure

<u>Tingay et al. 2008:</u> two distinct electron populations: low-energy population/extended emission zone, and high-energy population/compact emission zones (consistently with the X-ray variability observed)

Relativistic reconnection?

OR turbulent acceleration? (see <u>Stawarz & Petrosian 2008, Kakuwa et al. 2015/16</u>)

"OR" or "AND"?

MWL jet structure

<u>Marchenko et al. 2015</u>: analysis of all the archival observations of 3C273 jet with Chandra, HST, and VLA; precise modelling of the Chandra and HST point spread functions, Lucy-Richardson Deconvolution Algorithm applied to the Chandra data.

Spine/sheath structure

Marchenko et al. 2016:

two distinct synchrotron emission components; radio outflow is wider than the deconvolved Xray/ultraviolet jet; the intensity peaks of the X-ray knots are located systematically upstream of the corresponding radio intensity peaks.

Jet spine with **o** decreasing from **>>1** to **<1**?

Magnetic structure and σ

For the purely toroidal magnetic field in sheared cylindrical jet, the only non-zero component of the current number density (along the jet axis)

$$J' = \frac{c}{4\pi r'} \ \partial_{r'} \left(r' B'_{\phi} \right)$$

Magnetohydrostatic equilibrium condition gives the jet radial profile of the particle pressure

$$\partial_r P = -\frac{1}{8\pi r^2} \ \partial_r \left(\frac{r^2 B_\phi^2}{\Gamma^2}\right)$$

with such, $\sigma < 1$!

Highly magnetised jets (σ>1) must contain a significant poloidal magnetic field component (maybe just a narrow spine? good against kink instabilities anyway)

$$\sigma \equiv \frac{L_B}{L_p} = \frac{1}{16\pi} \frac{\int dr \, r \, \beta \, B_{\phi}^2}{\int dr \, r \, \beta \, \Gamma^2 \, P}$$

Shear layers & acceleration

inversely proportional to particle mean free path λ(γ)! (Ostrowski 2000, Stawarz & Ostrowski 2002)

$$au_{
m turb}(r) \simeq 3 \; rac{\lambda(\gamma)}{c} \; rac{c^2}{v_A^2(r)}$$

Boundary layer current

Shear acceleration within turbulent boundary layers of relativistic jets:

- operates preferentially on hadronic CRs rather than $e\pm$ pairs, due to the fact that in the case of $e\pm$ pairs a regular turbulent acceleration is more efficient for the typical parameters of AGN jets (only higherenergy hadronic CRs have mean free paths large enough to experience a sufficient bulk velocity gradient between subsequent scatterings, since maximum energies of leptonic CRs are limited by radiative losses);
- $e\pm$ pairs follow therefore the bulk flow rigorously, but the higher energy protons sample a range of velocities (since they "know" about the transverse velocity gradient), so inside the jet, where the electron current is the largest, they lag behind on average, giving **a net negative current outward**, $I_{\rm bl}$;
- there will be a toroidal magnetic field $B_{\rm bl}$ associated with this net current, which can be responsible for the RM gradients with CW orientation across pc-scale jets.

 \otimes

 \odot

RM < 0

RM ~ 0

RM > 0

RM gradients

- Gradients of RM often observed on pc scales in AGN jets
- Faraday screen seems to be external to the emission region because

(i) Δχ ~ λ² dependence
(ii) >45deg rotations observed
(iii) RM gradients seen around the jet/ISM interaction regions
(iv) a decrease of RM along the jets sometimes observed
(v) high fractional polarization from the RM gradient regions

- Faraday screen cannot be completely unrelated to the jets, since RM gradients vary on timescales of years
- RM gradients require toroidal MF in the depolarizing medium; meanwhile, polarization properties often imply that the MF within emitting regions contains a substantial poloidal component
- In the majority of cases RM gradients on pc scales are "clock-wise" (CW), and not counter clock-wise (CCW)!

<u>Asada et al.</u> <u>Hovatta et al.</u> <u>Gabuzda et al.</u>

Conclusions

- 1) Internal shock model implies matter-dominated jets (at least during flaring states); but maybe rather magnetic turbulence/reconnection?
- 2) Red/pink noise-type variability of AGN jets on timescales from hours to years, at different wavelengths!
- 3) Variability driven by an underlying single stochastic process, or at most a linear superposition of two stochastic processes -> magnetic turbulence?
- 4) Large-scale jets as important and fascinating as small-scale (blazar) jets!
- 5) High jet magnetisation ($\sigma > 1$) seems to require a substantial poloidal magnetic field component
- 6) "Boundary layer/spine" structure of AGN jets
- 7) Shear CR acceleration -> boundary layer currents -> RM gradients?