Magnetic Kink Instability and Fanaroff-Riley Dichotomy of AGN jets

Alexander (Sasha)

Einstein Fellow UC Berkeley Tchekhovskoy

Interpreting Black Hole Observations

Jet images

VLA, VLBA,

Hubble)

- What sets diskjet connection?
- How do jets emit?
- What can we learn from jet morphology?

Adapted from Tchekhovskoy 2015

Black Hole Accretion States

Tidal disruptions (TDEs), ultra-luminous X-ray sources, gamma-ray bursts

Quasars, X-ray binaries, TDEs

Low-luminosity active galactic nuclei (LLAGN), X-ray binaries

Both high- and low-luminosity disks are *radiatively inefficient*. Neglect radiation and simulate.

10⁻⁶ M87

 $\lambda = L/L_{\rm edd}$

0.01

10⁻⁹ SgrA*

Blazar Meeting Malaga

Alexander (Sasha) Tchekhovskoy

Upper Envelope of Jet Power vs. Spin (h/r~0.3)

(Tchekhovskoy+ 11; Tchekhovskoy, McKinney 12; McKinney, Tchekhovskoy, Blandford 12; Tchekhovskoy 15)

Quantify feedback due to black hole jet, disk wind from first principles

 $p>100\%\,{\rm means}$ net energy is extracted from the BH

Upper Envelope of Jet Power vs. Spin (h/r~0.3)

(Tchekhovskoy+ 11; Tchekhovskoy, McKinney 12; McKinney, Tchekhovskoy, Blandford 12; Tchekhovskoy 15)

Quantify feedback due to black hole jet, disk wind from first principles

Jet = 85% of Blandford-Znajek power Wind = BP = 15% of BZ power + 5% Disk wind is powered by a combination of BH spin and disk rotation

Blazar Meeting Malaga

Black Hole Accretion States

MADs:

(AT+13, AT & Giannios 15) Tidal disruptions (TDEs), ultra-luminous X-ray sources, gamma-ray bursts

(Zamaninasab ++AT 14, Ghisellini+14)

Quasars, X-ray binaries, TDEs

(Nemmen **Low-luminosity active galactic nuclei** & AT 14) (LLAGN), X-ray binaries

 $\lambda = L/L_{\rm edd}$ 0.01 10⁻⁶ M87 0⁻⁹ SgrA*

Magnetic Instabilities and Jet Emission

(Meyer+13)

В

Internal Kink Makes Jets Hot

rg and Tchekhovskoy, 2016, 5, 456, 1739; figures/movies courtesy Bromberg

Bromberg and MNRAS, 456, 1

(see also Nakamura+07,08; O'Neill+12; Porth & Komissarov 14)

How does Jet Heating Work?

Recollimation \rightarrow internal kink \rightarrow \rightarrow turbulence \rightarrow reconnection \rightarrow emission

Alexander (Sasha) Tchekhovskoy

Blazar Meeting Malaga

What does Jet Morphology Tell Us? FRI/FRII dichotomy (Fanaroff & Riley, 1974)

Instability of Magnetized Jets

 Kink instability growth timescale controlled by the magnetic pitch (high-mag., mildly relativistic):

$$t_{\rm kink} \simeq \frac{2\pi R_{\rm j}}{c} \frac{B_p}{B_\phi}$$
 (Appl et al. 2001)

• Jets are unstable if 5t_{kink} ≤ t_{expansion}, or

$$\Lambda \simeq 10 \left(\frac{L_{\rm j}}{\rho r^2 c^3} \right)^{1/6} \lesssim 1 \qquad \begin{array}{l} \text{(Bromberg \&} \\ \text{AT 2016)} \end{array}$$

• Cartoon galaxy density profile:

Summary

- MADs give us the upper envelope of disk-jet connection. MADs in blazars! (and not only)
- Jet heating caused by 3D internal kink. Power behind
- HST-I
- blazar flares
- gamma-ray burst prompt emission?
- Jet morphology is controlled by 3D external kink:
- low-power jets are unstable and get stalled inside galaxy
- FRI/FRII dichotomy likely mediated by magnetic instabilities

Alexander (Sasha) Tchekhovskoy

Blazar Meeting Malaga

What's next? Solve LARGE Problems Using GPUs

- Graphical Processing Units (GPUs) is a new disruptive technology
 - cutting edge of modern supercomputing
- Multi-GPU 3D HARM:
 - based on open-source HARM2D
 - 100x speedup compared to CPU version
- Applications:
 - Long-term accretion-jet simulations
 - Tidal disruption events simulations
 - Long-term accretion in GRBs and kilonovae
 - Accretion disks with full radiation transport

Matthew Liska (U of Amsterdam)